MId- to NEaR infrared spectroscopy for improVed medical diAgnostics
MINERVA
Project overview presentation
Motivation: to improve early cancer diagnosis

• One in four Europeans will die from cancer
 • Early diagnosis reduces mortality
 - Single most important factor
 • Identification whilst cancer is surgically curative

• Early identification is very difficult
 • Cancerous cells are very similar to healthy cells
 • Diagnosis becomes easier as the cancer develops

• State-of-the-art diagnostic technique
 • Microscopic examination of tissue sample
 • Notoriously difficult
 - Subjective judgement
 • High inconsistency rate
 - Even between expert pathologists.
Mid-IR spectroscopy: a new tool for pathologists

- **Mid-IR covers “fingerprint region” of the spectrum**
 - Spectral region studied in MINERVA: 1.5 µm to 12 µm
 - Allows identification of biomolecules
 - Fats, proteins, carbohydrates etc.
 - Type and distribution
 - Provides important new information for disease diagnosis

BUT

- **Spotting “cancer markers” is NOT sufficient**
 - Complex nature of biological samples
 - Inter-related distribution of species
 - Biochemical changes due to disease are difficult to detect

- **A more subtle technique is required**
 - Multivariate analysis.

![Image of prostate tissue using mid-IR.](Courtesy of University of Exeter.)
Multivariate analysis and correlation mapping

- **Multivariate analysis of mid-IR spectra**
 - Computer-based mathematical technique
 - Automated process

- **Correlation mapping**
 - A type of multivariate analysis
 - Identifies the location of different biochemicals in a sample
 - Enables visualisation of diseased regions or cells

- **MINERVA combines novel mid-IR spectroscopy and correlation mapping**
 - Could lead to a breakthrough diagnostic technology.
Innovation & challenges: photonic hardware

• **MINERVA is developing new photonic hardware**
 - **Mid-IR glass fibres**
 - **Mid-IR components**
 - Fused couplers
 - Acousto-optic modulators
 - Calomel crystals
 - **Novel pump lasers**
 - 2.9 µm and 4.5 µm
 - **Ultra-long wavelength supercontinuum sources (SCSs)**
 - 1.5-4.5 µm (ZBLAN)
 - 1.5-5.5 µm (InF$_3$)
 - 3-9 µm and 4-12 µm (chalcogenide)
 - **Detectors**
 - Using T2SL technology.
Innovation & challenges: bio-medical

- **MINERVA explores the mid-IR for medical applications**
 - Analysis of mid-IR interaction with tissue
 - Prepared samples
 - *In vitro* modelling
 - Future extension to *in vivo* testing
 - Develop multivariate diagnostic algorithms
 - Demonstrate spectral discrimination
 - Cell types
 - Pathology types
 - Data handling methodologies
 - Real-time read-out
 - User interface
 - Dissemination activities.
Mid-IR optical fibre 1: Fibres for pump lasers

- **Chalcogenide glass low loss mid-IR optical fibre sources**
 - Ultra-high purity materials
 - Innovative processing
- **Small-core Pr\(^{3+}\)-doped Ge-As-Ga-Se step-index fibre (SIF)**
- Emission 3.5 - 6 µm and 7.8 ms lifetime
 - Maintained from parent bulk glass
 - Unaffected by SIF heat processing

Tang et al.
Mid-infrared photoluminescence in small-core fiber…

- **Mid-IR fibres from Ge-As-Se extruded preforms**
 - Record lowest loss: 83 dB km\(^{-1}\)
 - Record transmission distance: 52 m

Tang et al.
Low loss Ge-As-Se chalcogenide glass fiber…
Mid-IR optical fibre 2: fibres for supercontinuum

- Record numerical aperture (NA~1) fibre pumped at 6.3 µm
 - Record widest and longest wavelength supercontinuum source (SCS)
 - 1.4 to 13.3 µm

C.R. Petersen et al.
Mid-infrared supercontinuum covering the 1.4–13.3 µm...

- Mid-IR spectral imaging of biological tissue *in vivo*
 - *i.e.* the mid-IR optical biopsy
- Characteristic spectral sets acquired
 - Mid-IR SCS / tissue interaction
 - Molecular discrimination and early cancer diagnosis.

A.B. Seddon et al.
Mid-infrared Spectroscopy/Bioimaging: Moving toward MIR optical biopsy
Bio-Optics World Feb-2016
Passive components 1

New fusion workstation for mid-IR fibres

• Novel heating method for soft glass fibres
• Custom system built at G&H (Torquay)
• First ever single-mode ZBLAN/chalcogenide fused fibre couplers demonstrated

Gary Stevens et al., Mid-IR fused fiber couplers
Passive components 2

Developing fibre end protection methods
• Fibre end caps fabricated
 • ZBLAN & chalcogenide

Splicing technique development
• ZBLAN-to-ZBLAN
• ZBLAN-to-silica
• Silica-to-chalcogenide
• Chalcogenide-to-chalcogenide

Tapering techniques optimised
• Part of fused device fabrication
• SCG components

Packaging mid-IR fibres
• Stable mounting of soft glass structures
Acousto-Optic Devices (2-4 µm) 1: AO Q-Switch (AOQS)

• The AOQS located inside the laser cavity “holds off” the onset of lasing
 • Energy is concentrated into a short pulse of very high intensity

• MINERVA purpose-built AOQS designed to operate at $\lambda \sim 2.8$ µm

• Host material and AR coatings need to withstand exceptionally high optical power density
 - Material of choice: Tellurium dioxide (TeO$_2$)
 - Damage threshold: >50 MW/cm2
 - Optical polarisation: Random
 - Loss modulation: 80%

• Used to achieve ground-breaking performance for a 2.79 µm Q-switched Er:ZBLAN fibre laser
Acousto-Optic Devices (2-4 µm) 2: AO Tunable Filter (AOTF)

- An AOTF is a electronically controlled solid-state optical passband filter
- Two MINERVA designs of AOTF have been developed
- Objective: Filter & control a mid-IR (2-4 µm) SCS
 - Quasi-collinear slow shear AO interaction for low drive power in the mid-IR
 - 20 mm or 40 mm interaction length
 - 20 mm; δλ ~ 5 nm @ 3 µm, <1 W RF power
 - 40 mm; δλ ~ 2·5 nm @ 3 µm, <1 W RF power
Pump lasers

- 2.9 µm Q-switched fibre laser
 - MINERVA target: high power, high energy
 - Er:ZBLAN fibre laser
- Applications
 - "Stepping stone" pump source for SCG
 - High absorption by water makes it an excellent laser for surgical cutting
- World beating performance achieved!
 - Pulse energy: 560 µJ
 - Pulse duration: 53 ns@1 kHz
 - Peak power: 10.6 kW

- 4.5 µm mode-locked fibre laser
 - MINERVA target: world first demonstration!
 - Pr-doped chalcogenide ultrafast fibre laser
 - Ultra-pure MINERVA fibre from NOTT
 - 2 µm Tm-doped fibre pump laser
 - Applications
 - Pump source for long-λ (4-12 µm) SCG
 - Biomedical spectroscopy
 - Precision surgery
 - Work continues!!!

S. Lamrini et al.
High-Energy Q-switched Er:ZBLAN Fibre Laser at 2.79 µm
CLEO Europe 2015
paper CJ-7.2

www.minerva-project.eu
Fluoride glass SCSs (1.5 to 5.5 µm)

- **Extended the spectrum**
- Longest wavelength from a fibre-pumped ZBLAN-based SCS: 4.75 µm

Peter Moselund et al., *Highly Stable, All-fiber, High Power ZBLAN Supercontinuum Source Reaching 4.75 µm...*
Advanced Solid State Lasers 2013 Postdeadline Papers (JTh5A)

- Highest power in the 3.5-4.7 µm atmospheric transmission band: 1.34 W

Peter M. Moselund et al., *All-fiber mid-IR supercontinuum: a powerful new tool for IR-spectroscopy*

- **Improved reliability**
- MINERVA has taken mid-IR SCS from lab curiosity to product maturity
- >2000 h service free operation on multiple systems demonstrated
- NKT products coming soon!

- **Beat the synchrotrons!**
- MINERVA lab system is two orders of magnitude brighter than the IR beamline of a synchrotron! *(Publication in progress)*
Ultra-long wavelength SCSs 1

- **MINERVA has delivered world-beating mid-IR supercontinuum sources**
 - Initial modelling predicted SCG to very long wavelengths
 - State-of-the-art two-polarisation multimode modelling at DTU
 - These simulations have now been demonstrated experimentally!
 - World record mid-IR bandwidth: from 1.4-13.3 µm

- World-record average power above 4.5 µm: 15.6 mW
 - Pump source: 4.4 µm 400 fs MHz OPA

References

C.R. Petersen et al.
Mid-infrared supercontinuum covering the 1.4–13.3 µm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre
Nature Photonics 8, 830 (2014)

U. Møller et al.
Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber
Optics Express 23, 3282 (2015)
Ultra-long wavelength SCSs 2

- **Focus on commercially relevant MHz mid-IR supercontinuum sources**
 - Portable with high average power out to c. 9-10 µm
 - 4.4 µm OPA or 4.4 µm cascaded supercontinuum pump
 - Nano-imprinted fibre
 - Fibre end-caps

- **MINERVA chalcogenide step index NOTT fibres**
 - Good power handling and broadband low loss

- **Custom-made MINERVA designed chalcogenide PCFs**
 - Taper from large core (good power handling) to small core (correct zero-dispersion)
 - Achieved SCG to 8.5 µm
Detectors: Type-II super-lattice detectors (T2SL)

- **T2SL detector technology**
 - High quality, high performance, cooled photon detector
 - Thin layers of InAs and GaSb
 - Broken band type-II alignment
 - Broadband
 - Cut off wavelengths from 2 to 30 µm

- **A III/V-material**
 - Good manufacturability at low cost
 - Higher operating temperature than InSb
 - Lower cost than MCT.
• **MINERVA is pushing T2SL technology to its limits!**

• Development of detector in the mid-IR wavelength band
 • 2-5.5 µm detector
 • NETD*<20 mK @120 K and f/4

• **IRnova Integrated Detector/Cooler Assembly (IDCA)**
 • 1.3 Mpixel detector array on 12 µm pitch
 • Hybridised with Xenics designed read-out circuits
 • Integrated in a state-of-the-art module with Stirling cooler.

• **New Xenics camera employing cooled T2SL technology based on IRnova’s IDCA**

*Noise Equivalent Temperature Difference
Demo: skin cancer identification

- **Mid-IR spectroscopy for fast screening of human body surfaces**
 - Rigid probe for human skin surface examination
 - Identification of altered cells and tissue lesions

- **MINERVA uses human skin equivalent models (HSE)**
 - 3D test standards grown in petri dishes
 - Generation of reference spectra of HSEs

- **Establishment and evaluation of test systems for skin cancer cell identification**
 - Acquisition of cell type specific mid-IR spectra
 - Analysis of mid-IR spectral changes induced by sample preparation
 - Correlation of mid-IR spectra with fluorescence labelled single cell standards

*Upper image: Optical coherence tomography image of a MINERVA 3D human skin equivalent
Lower image: bright field (a) and fluorescence (b) microscopy images of a fluorescence labelled single cell standard (mixed cell culture including fibroblasts, keratinocytes and skin cancer cells) for verification of skin cancer cell identification. Different fluorescence colours indicate different cell types. [Courtesy of NKT and WWU]*
Demo: high volume screening

• **MINERVA** will develop mid-IR micro-spectroscopy for rapid screening
 • High intensity mid-IR microscope for rapid analysis of disease-specific chemical signatures
 • Discrimination of
 • Abnormal cells from cytological specimens
 • Abnormal cells and tissues from unstained tissue sections

• **Evaluation of system for ex vivo human samples**
 • MINERVA will use human cells and tissues collected during routine clinical testing
 • Acquisition of mid-IR spectra from cells and tissues using globar mid-IR sources (hot SiC rod)
 • Comparison of performance with MINERVA supercontinuum sources
 • Analysis of spectral changes and correlation with gold standard histopathology / cytology.
Demo: High resolution benchtop imaging

- Comparison of FTIR benchtop imaging using different NA objective lenses
 - Cluster analysis of normal colon tissue w.r.t. HE stained tissue
 - Right: cluster centroid spectra and dendrogram corresponding to Fig. D
 - Shows typical glycoprotein features corresponding to mucin
- NB Images obtained using Globar®-FTIR benchtop imaging
 - Work underway to compare with SCS-based discrete frequency imaging

<table>
<thead>
<tr>
<th>Magnification</th>
<th>NA</th>
<th>Pixel Size</th>
<th>Images</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 7X</td>
<td>0.62</td>
<td>5.5 x 5.5 µm</td>
<td></td>
<td>Shows typical glycoprotein features</td>
</tr>
<tr>
<td>B. 36X</td>
<td>0.62</td>
<td>1.1 x 1.1 µm</td>
<td></td>
<td>Shows typical glycoprotein features</td>
</tr>
<tr>
<td>C. 12X</td>
<td>0.61</td>
<td>3.3 x 3.3 µm</td>
<td></td>
<td>Shows typical glycoprotein features</td>
</tr>
<tr>
<td>D. 63X</td>
<td>0.61</td>
<td>0.66 x 0.66 µm</td>
<td></td>
<td>Shows typical glycoprotein features</td>
</tr>
</tbody>
</table>

Demo: High resolution imaging

- First application of mid-IR SCS-based rapid IR imaging on tissue samples of clinical origin
- Individual frequencies to be tested and compared with conventional sources
- Testing will include samples from outside the consortium
 - Do you have an interesting sample for mid-IR spectroscopic testing?!

Gavin Rhys Lloyd & Nicholas Stone
Method for Identification of Spectral Targets in Discrete Frequency Infrared Spectroscopy for Clinical Diagnostics
Appl Spectrosc. 69, p. 1066 (2015)
MINERVA impact

• **MINERVA target applications**
 - Skin cancer detection
 - Rigid skin probe for use in hospitals and surgeries
 - MINERVA will only use skin models
 - Screening pathology
 - High throughput microscope-based screening
 - Hospital pathology labs
 - Cytological and histological

• Impact: Fewer biopsies and improved survival rates

• **Potential spin-off applications**
 - Spectroscopy
 - LIDAR
 - Laser surgery
 - Sensing.

MINERVA Advisory Group

- MINERVA has established a group of interested parties to:
 - Guide MINERVA research
 - Develop new exploitation routes for mid-IR technology
 - Use and provide samples for the MINERVA imaging systems
 - Identify novel applications

- New members welcome!

- Target organisations:
 - End users (hospitals, medical practitioners)
 - Research organisations (bio-medical and photonic)
 - Universities
 - Industrial companies.
Project information

• MINERVA is funded under the European Commission’s Seventh Framework Programme
 • Programme acronym FP7-ICT

• Funding scheme: Large-scale integrating project - CP-IP
• Activity: ICT-8-3.5 - Core and disruptive photonic technologies
 • Project Reference 317803

• Project cost 10.6 M€
• Project funding 7.3 M€

• Start date 01-Nov-2012
• End date 31Jul-2017
• Duration 57 months.
Consortium

<table>
<thead>
<tr>
<th></th>
<th>Company Name</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gooch & Housego (UK) Ltd.</td>
<td>UK (Coordinator)</td>
</tr>
<tr>
<td>2</td>
<td>NKT Photonics A/S</td>
<td>DK</td>
</tr>
<tr>
<td>3</td>
<td>LISA Laser Products OHG</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>BBT-Materials Processing SRO</td>
<td>CZ</td>
</tr>
<tr>
<td>5</td>
<td>Xenics NV</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>IR Nova AB</td>
<td>S</td>
</tr>
<tr>
<td>7</td>
<td>University of Nottingham</td>
<td>UK</td>
</tr>
<tr>
<td>8</td>
<td>Technical University of Denmark</td>
<td>DK</td>
</tr>
<tr>
<td>9</td>
<td>Vivid Components Ltd.</td>
<td>D</td>
</tr>
<tr>
<td>10</td>
<td>Westfälische Wilhelms-Universität Münster</td>
<td>D</td>
</tr>
<tr>
<td>11</td>
<td>The University of Exeter</td>
<td>UK</td>
</tr>
<tr>
<td>12</td>
<td>Gloucestershire Hospitals NHS Foundation Trust</td>
<td>UK</td>
</tr>
<tr>
<td>13</td>
<td>Universidad Politecnica de Valencia</td>
<td>E</td>
</tr>
</tbody>
</table>
Thanks for your attention!

www.minerva-project.eu Project website

For further information, please contact:

jward@goochandhousego.com Technical

bruce@vividcomponents.co.uk Admin & Advisory Group